499 Originally Issued: 06/29/2017 Revised: 11/14/2018 Valid Through: 06/30/2019 # INTERNATIONAL FIREPROOF TECHNOLOGY, INC 17528 Von Karman Avenue Irvine, California 92614 949-975-8588 www.painttoprotect.com ## ADDITIONAL COMPANY NAME: INTERNATIONAL CARBIDE TECHNOLOGY CO., LTD 2F, No. 50, Minguan Road Lu-Chu District Taoyuan, Taiwan 33846 886-3-3254301 www.incatech.com.tw ## DC315 FIELD APPLIED INTUMESCENT **COATINGS** **CSI Section:** 09 96 43 Fire-Retardant Coatings #### 1.0 RECOGNITION DC315 has been evaluated for use as a fire-protective coating for foam plastic products. The coating has been evaluated for the contribution of wall and ceiling finish materials to room fire growth and as an alternate to the prescriptive thermal barrier required in Section 2603.4 of the IBC and Section 316.4 of the IRC. The coating has also been evaluated as an alternate to the prescriptive ignition barriers required in Section 2603.4.1.6 of the IBC and Sections R316.5.3 and R316.5.4 of the IRC. DC315 evaluated in this report is a satisfactory alternative to the following codes and regulations: - 2018, 2015 and 2012 International Building Code® (IBC) - 2018, 2015 and 2012 International Residential Code® (IRC) - AC456 - AC377 ## 2.0 LIMITATIONS Use of DC315 recognized in this report is subject to the following: **2.1** The application of any additional interior finish over the fire-protective coating is limited to interior and exterior latex or waterborne acrylic paints. Additional applications of primers, including vapor retardant coatings, applied under the DC315 fire-protective coating is acceptable and shall be applied where noted in the tested systems listed in Tables 1 and 2 of this report. - 2.2 Spray Foam Plastic insulation shall be installed in accordance with the manufacturer's installation instructions. - **2.3** Approval of DC315 for use with any insulation product listed herein is conditional upon that insulation products' current approval for use with DC315. Users must independently verify the current validity of any evaluation report referenced herein. - **2.4** The fire-protective coating recognized in this report is produced by International Fireproof Technology in Taoyan, Taiwan and Irvine, California. ### 3.0 PRODUCT USE ## 3.1 Design - 3.1.1 Application as an Alternative Thermal Barrier **Assembly:** DC315, when applied to the foam plastic products in the average nominal thickness shown in Table 1 of this report, provides an alternative thermal barrier assembly to the prescriptive thermal barrier required in Section 2603.4 of the IBC and Section R316.4 of the IRC. - 3.1.2 Application as an Alternative Ignition Barrier Assembly: DC315, when applied to the foam plastic products in the average nominal thickness shown in Table 2 of this report, provides an alternative ignition barrier assembly to the prescriptive ignition barrier required in Section 2603.4.1.6 of the IBC and item 3 of Sections R316.5.3 and R316.5.4 of the IRC. - 3.1.3 Interior Finish: The foam plastic insulation with DC315 coating installed as shown in Tables 1 and 2 of this report meets the requirements for interior finish in IBC Section 803.1 and IRC Section R302.9, and may be left exposed to the interior of the building. The combinations shown in Table 1 have been tested in accordance with NFPA 286 and have met the acceptance criteria of 2018 IBC Section 803.1.1.1 and 2015 and 2012 IBC Section 803.1.2.1, qualifying the assembly to be used where a Class A classification in accordance with ASTM E84 or UL723 is required as applicable to Sections 803.1.2 and 803.13 of the 2018 IBC, Sections 803.1.1 and 803.11 of the 2015 IBC and Sections 803.1.1 and 803.9 of the 2012 IBC. - 3.1.4 Use as an interior finish or interior trim in plenums: Foam plastic insulations installed as shown in Table 1 of this report have been evaluated for use as an interior finish or interior trim in plenums as required by Section 2603.7 of the IBC and shall exhibit a flame spread index of 75 or less and a smoke-developed index of 450 or less when tested in accordance with ASTM E84 and meets the acceptance criteria of Section 803.1.1 of the 2018 and 2012 IBC and Section 803.1.2 of the 2015 IBC when tested to NFPA 286. The product described in this Uniform Evaluation Service (UES) Report has been evaluated as an alternative material, design or method of construction in order to satisfy and comply with the intent of the provision of the code, as noted in this report, and for at least equivalence to that prescribed in the code in quality, strength, effectiveness, fire resistance, durability and safely as applicable, in accordance with IBC Section 104.11. This document shall only be reproduced in its entirety. UNIFORM 499 Originally Issued: 06/29/2017 Revised: 11/14/2018 Valid Through: 06/30/2019 ### 3.2 Application **3.2.1 General:** DC315 shall be applied in accordance with International Fireproof Technology's installation instructions, the spray foam plastic manufacturer's installation instructions, this evaluation report and the applicable codes listed in Section 1.0 of this report. Where conflicts occur, the more restrictive governs. The manufacturer's published installation instructions and this report shall be available and strictly adhered to at all times at the jobsite during application. **3.2.2 Application:** DC315 shall be applied to the applicable foam plastic insulation as shown in <u>Table 1</u> or <u>Table 2</u> of this report, as applicable. Before application of DC315, the foam plastic insulation shall be allowed to cool and cure a minimum of one hour or as required by the foam plastic manufacturer, as applicable. The surface of the foam plastic shall be clean, firm and dry before application. DC315 shall be thoroughly mixed before application. Spray polyurethane foam insulation is inherently irregular on the exposed face and can have small gaps, pin holes or minor surface irregularities. Intumescent coatings may appear to be translucent and will not hide the spray foams inherent irregularities. In the event of a fire, intumescent coatings expand and intumesce to form a protective barrier over the underlying spray foam insulation. The application rate described in Section 3.2 of this report has been shown through testing to provide adequate coverage for use over spray foam plastic insulation in accordance with the average nominal installed thickness listed in Tables 1 and 2. The application of additional intumescent paint to an assembly that already has the prescribed amount applied will not increase the fire performance and is not recommended by the manufacturer. ### 4.0 PRODUCT DESCRIPTION DC315 intumescent coating is manufactured by International Fireproof Technology, Inc. and International Carbide Technology and is available in the colors of white, ice gray, dark gray and charcoal black. The coating is water-based and supplied in 5-gallon (18.9 L) pails weighing 58 lbs. (26.3 kg) and 55-gallon (208 L) drums weighing 640 lbs. (290 kg). The coating material has a maximum shelf life of 12 months when stored in factory-sealed containers at temperatures between 50°F and 90°F (10°C and 32°C). DC315 has a minimum 24-hour curing time. ## **5.0 IDENTIFICATION** DC315 pails and drums are identified by the International Carbide Technology or International Fireproof Technology name and address, product name (DC315), date of manufacture, product shelf life, conditions for storage and evaluation report number (ER-499). The container identification also includes the IAPMO Uniform Evaluation Service Mark of Conformity. Either Mark of Conformity may be used as shown below: ### 6.0 SUBSTANTIATING DATA - **6.1** Manufacturer's descriptive literature and installation instructions. Test results are from laboratories in compliance with ISO/IEC 17025. - **6.2** Data in accordance with the ICC-ES Acceptance Criteria for Spray-applied Foam Plastic Insulation, AC377, dated April 2016, including test reports in accordance with Appendix X of AC377. - **6.3** Data in accordance with the ICC-ES Acceptance Criteria for Fire-protective Coatings Applied to Spray-applied Foam Plastic Insulation Installed Without a Code-Prescribed Thermal Barrier, AC456, dated October 2015. - **6.4** Report of testing in accordance with ASTM E84 Surface Burning Characteristics of Building Materials. - **6.5** Report of testing in accordance with NFPA 286 Standard Method of Fire Test for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth. - **6.6** Report of Testing in accordance with ASTM D2697 Standard Test Method for Volume Nonvolatile Matter in Clear or Pigmented Coatings. - **6.7** Report of testing in accordance with ASTM D1475 Standard Test Method for Density of Liquid Coatings, Inks and Related Products. - **6.8** Report of testing in accordance with ASTM D2196 Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer. 499 Originally Issued: 06/29/2017 Revised: 11/14/2018 Valid Through: 06/30/2019 ### 8.0 STATEMENT OF RECOGNITION This evaluation report describes the results of research carried out by IAPMO Uniform Evaluation Service on DC315 field applied intumescent coatings to the conformance to the codes shown in Section 1.0 of this report and documents the product's certification. This coating is produced at locations noted in section 2.4 of this report under a quality control program with periodic inspection under the supervision of IAPMO UES. Brian Gerber, P.E., S.E. Vice President, Technical Operations Uniform Evaluation Service 3 riar Derber Richard Beck, PE, CBO, MCP Vice President, Uniform Evaluation Service > GP Russ Chaney CEO, The IAPMO Group For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org 499 Originally Issued: 06/29/2017 Revised: 11/14/2018 Valid Through: 06/30/2019 TABLE 1 Foam Plastic Products Approved for Use with DC315 As Assemblies Not Requiring A Prescriptive 15-Minute Thermal Barrier | | Product
Name | | Evaluation
Report ^{1, 2} | | Application | | | T11.1 | | |--|------------------------------|--------------------|--------------------------------------|-------------------------|---|--|----------|---|----------| | Manufacturer's
Name | | Product
Density | | Average Nom
Thicknes | ninal Installed
ss ⁴ (mils) | Theoretical Application
Rate ³ | | Maximum Thickness of
Spray Foam (inches) | | | | | | торого | Wet Film | Dry Film | gallons/100
square feet | sqft/gal | Vertical | Overhead | | Accella Polyurethane
Systems dba Bayseal | Bayseal CC X | 2.0 pcf | ER-522 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Accella Polyurethane
Systems dba Bayseal | Bayseal CC XP | 2.0 pcf | ER-522 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Accella Polyurethane
Systems dba Bayseal | Bayseal OC | 0.5 pcf | ER-519
ESR-1655 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | Accella Polyurethane
Systems dba Bayseal | Bayseal OCX | 0.5 pcf | ER-541 | (14) | 9 | 0.87 | 115 | 9 | 14 | | Accella Polyurethane
Systems | EcoBay CC | 2.0 pcf | ER-520
ESR-3076 | 18 | 12 | 1.1 | 89 | 7.25 | 7.25 | | Accella Polyurethane
Systems | EcoBay CC
Polar | 2.0 pcf | <u>ER-520</u> | 18 | 12 | 1.1 | 89 | 7.25 | 7.25 | | Accella Polyurethane
Systems dba
Premium Spray
Products | Foamsulate 210 | 2.0 pcf | ER-351 | 20 | 13 | 1.3 | 80 | 8 | 12 | | Accella Polyurethane
Systems
dba Quadrant | NatureSeal TM 500 | 0.5 pcf | ER-285 | (14) | 9 | 0.87 | 115 | 9 | 14 | | Accella Polyurethane
Systems
dba Quadrant | NatureSeal TM OCX | 0.5 pcf | (ER-285) | (14) | 9 | 0.87 | 115 | 9 | 14 | | Accella Polyurethane
Systems
dba Premium | Foamsulate TM 220 | 2.2 pcf | ER-352) | (14) | 9 | 0.87 | 115 | 5.5 | 9.5 | | Accella Polyurethane
Systems | Foamsulate TM 50 | 0.5 pcf | <u>ER-351</u> | 20 | 13 | 1.3 | 80 | 8 | 11.5 | 499 | | | | | | Maximum Thickness of | | | | | |---|---------------------------------|--------------------|--------------------------------------|-------------|---|----------------------------|-------------------|----------|-------------| | Manufacturer's
Name | Product
Name | Product
Density | Evaluation
Report ^{1, 2} | | ninal Installed
ss ⁴ (mils) | | Application ate 3 | | am (inches) | | Name | Name | Density | Keport | Wet Film | Dry Film | gallons/100
square feet | sqft/gal | Vertical | Overhead | | Accella Polyurethane
Systems | Foamsulate TM 50-NIB | 0.5 pcf | ER-394 | 14 | 9 | 0.87 | 115 | 9 | 14 | | Accella Polyurethane
Systems | QuadFoam® | 0.5 pcf | ER-271 | (14) | 9 | 0.87 | 115 | 8.5 | 14 | | Accella Polyurethane
Systems | QuadFoam®
500 OC | 0.5 pcf | <u>ER-590</u> | 22 | 14 | 1.3 | 73 | 10 | 11.5 | | Accella Polyurethane
Systems | QuadFoam® 2.0 | 2.0 pcf | ER-272 | 14) | 9 | 0.87 | 115 | 5.5 | 9.5 | | Accella Polyurethane
Systems | NeXGeN® 2.0 | 2.0 pf | <u>ER-523</u> | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | Accella Polyurethane
Systems | Sealtite TM OC+ | 1.9 pcf | ER-556 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Accella Polyurethane
Systems | Sealtite™OC+ | 0.75 pcf | <u>ER-557</u> | 20 | 13 | 1.3 | 80 | 11.5 | 11.5 | | Acme Urethanes | WC50 | 0.5 pcf | ER-605 | 18 | 12 | 1.1 | 89 | 10 | 12 | | Barnhardt
Manufacturing
Company dba NCFI
Polyurethanes | (InsulStar) | 2.0 pcf | ESR-1615 | (14) | 9 | 0.87 | 115 | 5.5 | 9.5 | | Barnhardt
Manufacturing
Company dba NCFI
Polyurethanes | InsulBloc® | 2.0 pcf | ESR-1615 | (14) | 9 | 0.87 | 115 | 5.5 | 9.5 | | Barnhardt
Manufacturing
Company dba NCFI
Polyurethanes | Sealite OCX | 0.5 pcf | ESR-3826 | 18 | 12 | 1.1 | 89 | 10 | 14 | | BASF Corporation | Entertite [®] G | 0.6 pcf | ESR-3102 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | BASF Corporation | Enertite® NM | 0.5 pcf | CCRR-
1032;
ESR-3102 | <u>(14)</u> | 9 | 0.87 | 115 | 8.5 | 14 | | BASF Corporation | Spraytite 158 | 2.0 pcf | CCRR
1031;
ESR-2642 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | BASF Corporation | Spraytite 178 | 2.1 pcf | CCRR
1031;
ESR-2642 | 20 | 14 | 1.25 | 80 | 5.5 | 11.5 | | BASF Corporation | Spraytite
81205 | 2.0 pcf | CCRR-
1031; ESR-
2642 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | BASF Corporation | Spraytite
81206 | 2.0 pcf | CCRR-
1031; ESR-
2642 | 20 | 14 | 1.25 | 80 | 5.5 | 11.5 | | BASF Corporation | Spraytite SP | 2.0 pcf | CCRR-
1031; ESR-
2642 | <u>14</u>) | 9 | 0.87 | 115 | 5.5 | 9.5 | 499 | | | | | | Application | | Maximum Thickness of | | | |---|--|--------------------|--------------------------------------|-------------------------|-------------|-----------------------------|----------------------|----------|--------------------------| | Manufacturer's
Name | Product Name | Product
Density | Evaluation
Report ^{1, 2} | Average Nom
Thicknes | | Theoretical A
Rate | | | Thickness of am (inches) | | | | · | • | Wet Film | Dry Film | gallons/ 100
square feet | sqft/gal | Vertical | Overhead | | BASF
Corporation | Walltite HP+ | 2.0 pcf | CCRR-
1031; ESR-
2642 | 20 | 14 | 1.25 | 80 | 5.5 | 11.5 | | BASF
Corporation | Walltite US-N | 2.0 pcf | CCRR-
1031; ESR-
2642 | 20 | 14 | 1.25 | 80 | 5.5 | 11.5 | | BASF
Corporation | Walltite US | 2.0 pcf | CCRR-
1031; ESR-
2642 | 20 | 14 | 1.25 | 80 | 5.5 | 11.5 | | Certainteed | Certaspray CC | 2.0 pcf | ESR-3758 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Certainteed | Certaspray OCX | 0.5 pcf | ESR-3759 | 20 | 13 | 1.25 | 80 | 5.25 | 14 | | Commercial
Thermal Solutions | Tiger Foam® E84 Fire-rated SPF Class 1 Spray Foam System | 2.1 pcf | ESR-3183 | 20 | 13 | 1.3 | 80 | 3.5 | 3.5 | | Creative Polymer
Solutions | Air Lok 45 | 0.5 pcf | ER-554 | 18 | 12 | 1.1 | 89 | 10 | 12 | | DAP Foam, Inc. | Touch 'n Seal
Class 1 | 2.2 pcf | ESR-3052 | 20 | 13 | 1.3 | 80 | 3.5 | 3.5 | | DAP Foam, Inc. | Touch 'n
Professional
Class 1 | 2.2 pcf | ESR-3052 | 20 | 13 | 1.3 | 80 | 3.5 | 3.5 | | Demilec | HeatLok
Agribalance | 0.6 pcf | ESR-2600 | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | Demilec | APX | 0.5 pcf | ESR-3470 | 20 | 13 | 1.3 | 80 | 8 | 10 | | Demilec | HeatLok Soy
200+ | 2.0 pcf | ESR-3210 | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | Demilec | HeatLok XT-S | 2.0 pcf | ESR-3824 | (14) | 9 | 0.87 | 115 | 7.5 | 11.5 | | Demilec | HeatLok XT-W | 2.0 pcf | ESR-3883 | (14) | 9 | 0.87 | 115 | 7.5 | 11.5 | | Demilec | HeatLok HFO | 2.0 pcf | ESR-4073 | 14 | 9 | 0.87 | 115 | 7.5 | 11.5 | | Demilec | HeatLok HFO
Pro | 2.0 pcf | <u>ER-565</u> | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | Demilec | Sealection 500 | 0.5 pcf | CCRR-
1063; ESR-
1172 | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | Dow | Styrofoam CM
2045 | 2.0 pcf | ESR-2670;
ESR-1659 | 22 | 15 | 1.4 | 73 | 9.5 | 9.5 | | Dow | FROTH-PAK™ | 1.75 pcf | ESR-3228 | 20 | 14 | 1.3 | 80 | 3.5 | 3.5 | | Elastochem
Specialty
Chemicals Inc. | Insulthane
Extreme | 2.0 pcf | ESR-3809 | 18 | 12 | 1.1 | 89 | 7.25 | 7.25 | | Elastochem
Specialty
Chemicals Inc | Insulthane
Proline Plus | 2.0 pcf | ESR-3541 | (14) | 9 | 0.87 | 115 | 5.5 | 9.5 | | Energy One
America | EOA 2000 | 2.0 pcf | ER-443 | (14) | 9 | 0.87 | 115 | 5.5 | 9.5 | | Energy One
America | EOA 500 | 0.5 pcf | ESR-3686 | 14 | 9 | 0.87 | 115 | 9 | 14 | 499 | | | | | | Application | | Maximum | Thickness of | | |---------------------------------|---|--------------------|--------------------------------------|----------|--|----------------------------|-----------------------------|--------------|-------------| | Manufacturer's
Name | Product
Name | Product
Density | Evaluation
Report ^{1, 2} | | ge Nominal
nickness ⁴ (mils) | Theoretical
Ra | Application te ³ | | am (inches) | | | | | • | Wet Film | Dry Film | gallons/100
square feet | sqft/gal | Vertical | Overhead | | Gaco Western | F1850 | 2.0 pcf | CCRR-1043 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Gaco Western | F1880 | 2.2 pcf | CCRR-1106 | 14 | 9 | 0.87 | 115 | 9 | 12 | | Gaco Western | (183M) | 2.0 pcf | CCRR-1002 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Gaco Western | Gaco Green
052N | 0.5 pcf | CCRR-1075;
ESR-2478 | 14 | 9 | 0.87 | 115 | 11.25 | 11.25 | | Gaco Western | Gaco
Firestop2
F5001 | 0.5 pcf | CCRR-1009 | 18 | 12 | 1.1 | 89 | 18 | 18 | | Gaco Western | GacoEZSpray
F4500 | 0.55 pcf | CCRR-1107 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | General Coatings
Manf. Corp. | Ultrathane 230 | 2.0 pcf | ESR-3033 | 22 | 15 | 1.4 | 73 | 5.5 | 7.5 | | Henry Company | Permax 1.8
(RT 2045 1.8) | 1.8 pcf | ESR-3024 | 21 | 14 | 1.3 | 77 | 11.25 | 11.25 | | Henry Company | Permax 2.0
(RT 2045 2.0) | 2.0 pcf | ESR-3024 | 21 | 14 | 1.3 | 77 | 11.25 | 11.25 | | Henry Company | Permax 2.0X
Fast | 2.0 pcf | ESR-3647 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Henry Company | Permax 2.0X | 2.0 pcf | ESR-3647 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Henry Company | Permax 0.5LV | 0.5 pcf | ESR-3646 | 18 | 12 | 1.3 | 89 | 11.5 | 11.5 | | ICP Adhesive and
Sealants | Handi-foam
E84 Class 1 | 2.0 pcf | ESR-2717 | 20 | 13 | 1.3 | 80 | 3.5 | 3.5 | | Icynene, Inc. | Classic Plus | 0.7 pcf | ESR-1826 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | Icynene, Inc. | Classic | 0.5 pcf | ESR-1826 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | Icynene, Inc. | Classic Ultra | 0.5 pcf | ESR-1826 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | Icynene, Inc. | Classic Ultra
Select | 0.5 pcf | ESR-1826 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | Icynene, Inc. | MD-C-200 | 2.4 pcf | ESR-3199 | 22 | 14 | 1.4 | 73 | 6 | 10 | | Icynene, Inc. | ProSeal | 2.0 pcf | ESR-3500 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Icynene, Inc. | ProSeal HFO | 2.0 pcf | CCRR-1108 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Icynene, Inc. | ProSeal LE | 2.0 pcf | ESR-3500 | (14) | 9 | 0.87 | 115 | 5.5 | 9.5 | | Johns Manville | JM Corbond® III Performance Insulation | 2.0 pcf | ER-146 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Johns Manville | JM Corbond® ocx SPF | 0.5 pcf | ER-372;
ESR-3777 | 14 | 9 | 0.87 | 115 | 9 | 14 | | Johns Manville | JM Corbond®
MCS | 2.0 pcf | ESR-3159 | 22 | 14 | 1.4 | 73 | 7.25 | 9.25 | 499 | | | Product
Density | Evaluation
Report ^{1, 2} | | Application | on of DC315 | | Maximum Thickness | | |--------------------------------|----------------------------|--------------------|--------------------------------------|---------------------------------|-----------------------|--------------------------------|-------------------------------------|-------------------|------------------| | Manufacturer's
Name | Product Name | | | Average I
Installed T
(mi | hickness ⁴ | Rate 3 (gallo | Application
ns/100 square
et) | of Spr | ay Foam
ches) | | | | | | Wet Film | Dry Film | gallons/
100 square
feet | sqft/gal | Vertical | Overhead | | Johns Manville | JM Corbond® oc | 0.5 pcf | ESR-3776 | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | LaPolla Industries | Foam-Lok FL 450 | 0.5 pcf | ESR-4242 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | LaPolla Industries | FL500 | 0.5 pcf | ESR-2847 | (14) | 9 | 0.87 | 115 | 8.5 | 14 | | LaPolla Industries | FLX-500 | 0.5 pcf | ER-401 | 14 | 9 | 0.87 | 115 | 9 | 14 | | Lapolla Industries | FoamLok FL2000-
4G | 2.0 pcf | CCRR-1025 | (14) | 9 | 0.87 | 115 | 5.5 | 9.5 | | LaPolla Industries | FL 2000 | 2.0 pcf | ESR-2629 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Natural Polymers,
LLC | Natural-Therm®
0.50 pcf | 0.5 pcf | <u>ER-336</u> | 21 | 14 | 1.3 | 77 | 8 | 12 | | Natural Polymers,
LLC | Natural-Therm® 0.5 IB | 0.5 pcf | ER-503 | 21 | 14 | 1.3 | 77 | 8 | 12 | | Natural Polymers,
LLC | Natural-Therm®
Light | 0.5 pcf | ER-589 | 21 | 14 | 1.3 | 77 | 8 | 12 | | Natural Polymers,
LLC | Natural-Therm® 2.0 IBW | 2.0 pcf | ER-336 | 14 | 9 | 0.87 | 115 | 5.5 | 14 | | Natural Polymers,
LLC | Natural-Therm® 2.0 IBS | 2.0 pcf | ER-336 | 14 | 9 | 0.87 | 115 | 5.5 | 14 | | Natural Polymers,
LLC | Natural-Therm®
ZERO | 2.0 pcf | <u>ER-527</u> | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | NuWool Company
Incorporated | Nu-Seal 0.5 | 0.5 pcf | <u>ER-504</u> | 21 | 14 | 1.3 | 77 | 8 | 10 | | NuWool Company
Incorporated | Nu-Seal 2.0W | 2.0 pcf | <u>ER-504</u> | 21 | 14 | 1.3 | 77 | 11.25 | 11.25 | | Patriot Spray Foam,
Inc. | Patriot 200 | 2.0 pcf | ESR-4065 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Patriot Spray Foam,
Inc. | Patriot 500 | 0.5 pcf | ESR-4064 | 20 | 13 | 1.3 | 77 | 6 | 14 | | Patriot Spray Foam,
Inc. | Patriot 500 HY | 0.5 pcf | ESR-4064 | 20 | 13 | 1.3 | 77 | 6 | 14 | | Polygreen Solutions | GreenSeal 44 | 0.5 pcf | <u>ER-606</u> | 18 | 12 | 1.1 | 89 | 10 | 12 | | Preferred Solutions,
Inc. | Staycell® 302 | 2.2 pcf | ER-569 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Profoam | Proseal 2.0 | 2.0 pcf | ESR-3835 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | Rhino Linings. | ThermalGuard OC.5 | 0.5 pcf | ESR-2100 | 18 | 13 | 1.1 | 89 | 7.5 | 11.5 | | Rhino Linings | Thermal Guard CC2 | 2.0 pcf | ESR-2100 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | SES Foam, LLC | Nexseal 2.0 | 2.0 pcf | ER-374 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | SES Foam, LLC | Nexseal 2.0 LE | 2.0 pc | ER-374 | (14) | 9 | 0.87 | 115 | 5.5 | 9.5 | 499 Originally Issued: 06/29/2017 Revised: 11/14/2018 Valid Through: 06/30/2019 | | | | | | | Maximum Thickness | | | | | |---------------------------------|----------------------|--------------------|--------------------------------------|----------|--|-----------------------------|------------------------------|---------------------------|----------|--| | Manufacturer's
Name | Product
Name | Product
Density | Evaluation
Report ^{1, 2} | | Average Nominal Installed
Thickness ⁴ (mils) | | lication Rate
quare feet) | of Spray Foam
(inches) | | | | | | | | Wet Film | Dry Film | gallons/
100 square feet | sqft/gal | Vertical | Overhead | | | SES Foam, LLC | SES 2.0 | 2.0 pcf | ER-374 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | | SES Foam, LLC | SES 2.0 LE | 2.0 pcf | ER-374 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | | SES Foam, LLC | SES Foam 0.5 | 0.5 pcf | ER-492 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | | SES Foam, LLC | SucraSeal 0.5 | 0.5 pcf | ESR-3375 | 14 | 9 | 0.87 | 115 | 9 | 14 | | | Sustainable
Polymer Products | 2.0 CC | 2.0 pcf | <u>ER-511</u> | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | | Sustainable
Polymer Products | 0.5 OCX | 0.5 pcf | <u>ER-512</u> | 20 | 13 | 1.3 | 80 | 7.5 | 11.5 | | | Sustainable
Polymer Products | .50 OC | 0.5 pcf | <u>ER-513</u> | 20 | 13 | 1.3 | 80 | 8 | 11.5 | | | SWD Urethane | Quik-Shield
106 | 0.5 pcf | CCCR-1011 | 24 | 15 | 1.5 67 | | 11.25 | 11.25 | | | SWD Urethane | Quik-Shield
108 | 0.5 pcf | CCRR-1051 | 14 | 9 | 0.87 115 | | 8.5 | 14 | | | SWD Urethane | Quik-Shield
100X | 0.5 pcf | CCRR-1050 | 18 | 12 | 1.1 89 | | 7.25 | 11.25 | | | SWD Urethane | Quik-Shield
112XC | 2.0 pcf | CCRR-1011 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | | SWD Urethane | Quik-Shield
118 | 2.0 pcf | CCRR-1093 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | | ThermoSeal | 2000/2000W | 2.0 pcf | ER-581 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | | ThermoSeal | CCX | 2.0 pcf | ESR-4137 | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | | ThermoSeal | OCX | 0.5 pcf | CCRR-1095 | 18 | 12 | 1.1 | 89 | 7.5 | 11.5 | | | ThermoSeal | ONE | 2.45 pcf | ER-603 | 20 | 13 | 1.3 | 80 | 5.5 | 9.5 | | | ThermoSeal | TS 360 | 0.4 pcf | ER-603 | 20 | 13 | 1.3 | 80 | 8 | 14 | | | ThermoSeal | TS 500 | 0.5 pcf | ER-603 | 18 | 12 | 1.1 | 89 | 8 | 14 | | | ThermoSeal | TS 800 | 0.8 pcf | ER-603 | 20 | 13 | 1.1 | 89 | 8 | 14 | | | UTC | 7041 0.5 lb | 0.5 pcf | ESR-3244 | 20 | 13 | 1.3 | 80 | 5.5 | 14.75 | | | UTC | 7040 0.5 lb | 0.5 pcf | ESR-3244 | 20 | 13 | 1.3 | 80 | 5.5 | 14.75 | | | Victory Polymers | VPC-
Onestroke | 0.5 pcf | ER-599 | 18 | 12 | 1.1 | 89 | 10 | 12 | | | Volatile Free, Inc. | VFI-716 | 0.5 pcf | <u>ER-414</u> | 20 | 13 | 1.3 | 80 | 8 | 11.5 | | | Volatile Free, Inc. | VFI-714 | 2.2 pcf | ER-415 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | | XtremeSeal, LLC | XtremeSeal 2.0 LE | 2.0 | ER-537 | 14 | 9 | 0.87 | 115 | 5.5 | 9.5 | | | XtremeSeal, LLC | XtremeSeal 0.5 | 0.5 | ER-538 | 14 | 9 | 0.87 | 115 | 8.5 | 14 | | For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm, $1 \text{ pcf} = 16.02 \text{ kg/m}^3$ ### Notes: - ER Evaluation Reports from IAPMO Uniform Evaluation Service CCRR – Code Compliance Research Reports from Intertek. ESR – Evaluation Service Reports from ICC-ES. - Theoretical coating application rates are based strictly on the average nominal thickness requirements and shall be increased for site-specific conditions such as foam plastic surface texture, overspray loss, container and other residues, application technique and environmental conditions. - 4. Average nominal installed thickness shall be determined by taking measurements of the wet film thickness on the surface of the SPF or using medallions. Measurements shall be made and recorded within 5 minutes of application. Two measurements shall be made at each location avoiding the thicknest and thinnest spots to determine average nominal thickness. When medallions are used the medallion shall measure between 4 and 10 square inches with the smallest dimension being 1³/4 inches. (Medallion size and number of measurements are based on Section 3.4.2 of AC456) Approval of DC315 for use with any insulation product listed herein is conditional upon that insulation product's current approval for use with DC315. Users must independently verify the current validity of any evaluation report referenced herein. 499 TABLE 2 Foam Plastic Products Approved for Use with DC315 As Assemblies Not Requiring A Prescriptive Ignition Barrier | | | | | l A | Application of 1 | DC315 | | | | |------------------------------------|----------------------------|--------------------|--------------------------------------|-----------|--|--|----------|---|--| | Manufacturer's
Name | Product Name | Product
Density | Evaluation
Report ^{1, 2} | Installed | e Nominal
Thickness ⁴
nils) | Theoretical
Application
Rate per | | Maximum Thickness of
Spray Foam (inches) | | | | | | | Wet Film | Dry Film | Gallon ³ (square feet) | Vertical | Overhead | | | Accella
Polyurethane
Systems | Bayseal OC
0.5 lb | 0.5 pcf | ESR-1655 | 4 | 3 | 400 | 9.5 | 11.5 | | | Accella
Polyurethane
Systems | Foamsulate 220 | 2.0 pcf | ER-352 | 4 | 3 | 400 | 7.5 | 11.5 | | | Accella
Polyurethane
Systems | QuadFoam®
500 | 0.5 pcf | ER-271 | 4 | 3 | 400 | 7.5 | 11.5 | | | Accella
Polyurethane
Systems | Foamsulate™
50 | 0.5 pcf | ER-351 | 4 | 3 | 400 | 7.5 | 11.5 | | | Accella
Polyurethane
Systems | Foamsulate™
50-HY | 0.5 pcf | ER-540 | 4 | 3 | 400 | 7.5 | 11.5 | | | Accella
Polyurethane
Systems | Sealtite TM OC+ | 0.75 pcf | <u>ER-557</u> | 4 | 3 | 400 | 14 | 14 | | | Acme Urethanes | WC50 | 0.5 pcf | ER-605 | 4 | 3 | 400 | 8 | 14 | | | BASF | 158 Spraytite | 2.0 pcf | ESR-2642 | 4 | 3 | 400 | 5.5 | 11.5 | | | BASF | Enertite | 0.5 pcf | ESR-3102 | 4 | 3 | 400 | 11.5 | 15.5 | | | BASF | Spraytite 178 | 2.0 pcf | ESR-2642 | 4 | 3 | 400 | 5.5 | 11.5 | | | BASF | Spraytite
81206 | 2.0 pcf | ESR-2642 | 4 | 3 | 400 | 5.5 | 11.5 | | | BASF | Spraytite
81205 | 2.0 pcf | ESR-2642 | 4 | 3 | 400 | 5.5 | 11.5 | | | BASF | Spraytite SP | 2.0 pcf | ESR-2642 | 4 | 3 | 400 | 5.5 | 11.5 | | | BASF | Walltite US | 2.0 pcf | ESR-2642 | 4 | 3 | 400 | 5.5 | 11.5 | | | BASF | Walltite US-N | 2.0 pcf | ESR-2642 | 4 | 3 | 400 | 5.5 | 11.5 | | | BASF | Walltite HP+ | 2.0 pcf | ESR-2642 | 4 | 3 | 400 | 5.5 | 11.5 | | | Certainteed | CertaSpray X | 0.5 pcf | ESR-3759 | 4 | 3 | 400 | 11.5 | 11.5 | | | Creative Polymer
Solutions | Air Lok 45 | 0.5 pcf | <u>ER-554</u> | 4 | 3 | 400 | 8 | 14 | | | Demilec | Agribalance | 0.6-0.8 pcf | ESR-2600 | 4 | 3 | 400 | 7.5 | 11.5 | | | Demilec | Heatlok XT-w | 2.0 pcf | ESR-3883 | 4 | 3 | 400 | 7.5 | 11.5 | | 499 | Manufacturer's | Product | Product | roduct Evaluation | 2 | Maximum Thickness of | | | | |---------------------------------|--|---------|-----------------------------|--|----------------------|---|----------|-------------| | Name Name | Name | Density | Report ^{1, 2} | Average Nomina
Thickness ⁴ (| | Theoretical Application
Rate per Gallon ³ | Spray Fo | am (inches) | | | | | | Wet Film | Dry Film | (square feet) | Vertical | Overhead | | Demilec | Sealection
500 | 0.5 pcf | ESR-1172 | 4 | 3 | 400 | 7.5 | 11.5 | | Energy One
America | EOA 2000 | 2.0 pcf | ER-443 | 4 | 3 | 400 | 7.5 | 11.5 | | Gaco Western | Gaco Green
052N | 0.5 pcf | CCRR-
1075; ESR-
2478 | 4 | 3 | 400 | 11.25 | 11.25 | | General Coatings | Ultra-Thane
230 | 2.0 pcf | ESR-3033 | 4 | 3 | 400 | 7.5 | 11.5 | | Henry | Permax LV | 0.5 pcf | ESR-3646 | 4 | 3 | 400 | 11.5 | 11.5 | | Icynene, Inc. | Classic Plus | 0.7 pcf | ESR-1826 | 4 | 3 | 400 | 8 | 14 | | Icynene, Inc. | Classic | 0.5 pcf | ESR-1826 | 4 | 3 | 400 | 5.5 | 11.25 | | Icynene, Inc. | Classic
Ultra | 0.5 pcf | ESR-1826 | 4 | 3 | 400 | 5.5 | 11.25 | | Icynene, Inc. | Classic
Ultra Select | 0.5 pcf | ESR-1826 | 4 | 3 | 400 | 5.5 | 11.25 | | Icynene, Inc | ProSeal | 2.0 pcf | ESR-3500 | 4 | 3 | 400 | 8 | 14 | | Icynene, Inc | ProSeal LE | 2.0 pcf | ESR-3500 | 4 | 3 | 400 | 8 | 14 | | Johns Manville | JM Corbond® III Performance Insulation | 2.0 pcf | ER-146 | 4 | 3 | 400 | 7.5 | 11.5 | | LaPolla | FL500 | 0.5 pcf | ESR-2847 | 4 | 3 | 400 | 5.5 | 11.5 | | NCFI | Sealite | 0.5 pcf | ESR-1154 | 4 | 3 | 400 | 12 | 14 | | Natural Polymers,
LLC | Natural-
Therm®
Zero | 1.9 pcf | <u>ER-527</u> | 4 | 3 | 400 | 7.5 | 11.5 | | Patriot | 200 | 2.0 pcf | ESR-4065 | 4 | 3 | 400 | 8 | 14 | | Patriot | 500 | 0.5 pcf | ESR-4064 | 4 | 3 | 400 | 5.5 | 11.25 | | Patriot | 500 HY | 0.5 pcf | ESR-4064 | 4 | 3 | 400 | 5.5 | 11.25 | | Polygreen
Solutions | GreenSeal
44 | 0.5 pcf | ER-606 | 4 | 3 | 400 | 8 | 14 | | Rhino Linings | ThermoGua
rd | 0.5 pcf | ESR-2100 | 4 | 3 | 400 | 8 | 12 | | SES Foam, LLC | SES 0.5 | 0.5 pcf | ER-492 | 4 | 3 | 400 | 9.5 | 11.5 | | Sustainable
Polymer Products | .50 OC HY | 0.5 pcf | <u>ER-514</u> | 4 | 3 | 400 | 7.5 | 11.5 | | Sustainable
Polymer Products | 2 lb. CC | 2.0 pcf | <u>ER-511</u> | 4 | 3 | 400 | 7.5 | 11.5 | 499 Originally Issued: 06/29/2017 Revised: 11/14/2018 Valid Through: 06/30/2019 | | | Product
Density | Evaluation
Report ^{1,2} | Applica | | Tri : i e | | | |---------------------------------|-------------------|--------------------|-------------------------------------|--|----------------------------|--|----------|----------| | Manufacturer's
Name | Product
Name | | | Average Nominal I
Thickness ⁴ (m | Theoretical
Application | Maximum Thickness of
Spray Foam (inches) | | | | | 1,41110 | Demotey | Порого | Wet Film | Dry Film | Rate per
Gallon ³
(square feet) | Vertical | Overhead | | Sustainable
Polymer Products | .50 lb OCX | 0.5 pcf | <u>ER-512</u> | 4 | 3 | 400 | 7.5 | 11.5 | | SWD | QS 108 | 0.5 pcf | CCRR-1051 | 4 | 3 | 400 | 8 | 12 | | Victory Polymers | VPC-
Onestroke | 0.5 pcf | ER-599 | 4 | 3 | 400 | 8 | 14 | For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm, $1 \text{ pcf} = 16.02 \text{ kg/m}^3$ #### **Notes:** - Approval of DC315 for use with any insulation product listed herein is conditional upon that insulation products' current approval for use with DC315. Users must independently verify the current validity of any evaluation report referenced herein. - ER Evaluation Reports from IAPMO Uniform Evaluation Service CCRR – Code Compliance Research Reports from Intertek. ESR – Evaluation Service Reports from ICC-ES. - 3. Theoretical coating application rates are based strictly on the average nominal thickness requirements and shall be increased for site-specific conditions such as foam plastic surface texture, overspray loss, container and other residues, application technique and environmental conditions. - 4. Average nominal installed thickness shall be determined by taking measurements of the wet film thickness on the surface of the SPF or using medallions,. Measurements shall be made and recorded within 5 minutes of application. Two measurements shall be made at each location avoiding the thickest and thinnest spots to determine average nominal thickness. When medallions are used the medallion shall measure between 4 and 10 square inches with the smallest dimension being 1³/₄ inches. (Medallion size and number of measurements are based on Section 3.4.2 of AC456)